Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Neurosci ; 23(11): 1352-1364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33097921

RESUMO

The mechanisms by which prenatal immune activation increase the risk for neuropsychiatric disorders are unclear. Here, we generated developmental cortical interneurons (cINs)-which are known to be affected in schizophrenia (SCZ) when matured-from induced pluripotent stem cells (iPSCs) derived from healthy controls (HCs) and individuals with SCZ and co-cultured them with or without activated microglia. Co-culture with activated microglia disturbed metabolic pathways, as indicated by unbiased transcriptome analyses, and impaired mitochondrial function, arborization, synapse formation and synaptic GABA release. Deficits in mitochondrial function and arborization were reversed by alpha lipoic acid and acetyl-L-carnitine treatments, which boost mitochondrial function. Notably, activated-microglia-conditioned medium altered metabolism in cINs and iPSCs from HCs but not in iPSCs from individuals with SCZ or in glutamatergic neurons. After removal of activated-microglia-conditioned medium, SCZ cINs but not HC cINs showed prolonged metabolic deficits, which suggests that there is an interaction between SCZ genetic backgrounds and environmental risk factors.


Assuntos
Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Microglia/metabolismo , Esquizofrenia/metabolismo , Adulto , Técnicas de Cocultura , Encefalite/metabolismo , Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
2.
Mol Psychiatry ; 25(11): 2873-2888, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31019265

RESUMO

Schizophrenia (SCZ) is a neurodevelopmental disorder. Thus, studying pathogenetic mechanisms underlying SCZ requires studying the development of brain cells. Cortical interneurons (cINs) are consistently observed to be abnormal in SCZ postmortem brains. These abnormalities may explain altered gamma oscillation and cognitive function in patients with SCZ. Of note, currently used antipsychotic drugs ameliorate psychosis, but they are not very effective in reversing cognitive deficits. Characterizing mechanisms of SCZ pathogenesis, especially related to cognitive deficits, may lead to improved treatments. We generated homogeneous populations of developing cINs from 15 healthy control (HC) iPSC lines and 15 SCZ iPSC lines. SCZ cINs, but not SCZ glutamatergic neurons, show dysregulated Oxidative Phosphorylation (OxPhos) related gene expression, accompanied by compromised mitochondrial function. The OxPhos deficit in cINs could be reversed by Alpha Lipoic Acid/Acetyl-L-Carnitine (ALA/ALC) but not by other chemicals previously identified as increasing mitochondrial function. The restoration of mitochondrial function by ALA/ALC was accompanied by a reversal of arborization deficits in SCZ cINs. OxPhos abnormality, even in the absence of any circuit environment with other neuronal subtypes, appears to be an intrinsic deficit in SCZ cINs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Interneurônios/metabolismo , Interneurônios/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Esquizofrenia/patologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Masculino
4.
Nat Neurosci ; 22(2): 229-242, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664768

RESUMO

We generated cortical interneurons (cINs) from induced pluripotent stem cells derived from 14 healthy controls and 14 subjects with schizophrenia. Both healthy control cINs and schizophrenia cINs were authentic, fired spontaneously, received functional excitatory inputs from host neurons, and induced GABA-mediated inhibition in host neurons in vivo. However, schizophrenia cINs had dysregulated expression of protocadherin genes, which lie within documented schizophrenia loci. Mice lacking protocadherin-α showed defective arborization and synaptic density of prefrontal cortex cINs and behavioral abnormalities. Schizophrenia cINs similarly showed defects in synaptic density and arborization that were reversed by inhibitors of protein kinase C, a downstream kinase in the protocadherin pathway. These findings reveal an intrinsic abnormality in schizophrenia cINs in the absence of any circuit-driven pathology. They also demonstrate the utility of homogenous and functional populations of a relevant neuronal subtype for probing pathogenesis mechanisms during development.


Assuntos
Caderinas/metabolismo , Interneurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Transdução de Sinais/fisiologia , Animais , Caderinas/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Interneurônios/patologia , Masculino , Camundongos , Camundongos Knockout , Córtex Pré-Frontal/patologia , Protocaderinas , Esquizofrenia/patologia , Sinapses/genética , Sinapses/metabolismo
5.
Transl Psychiatry ; 8(1): 230, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352993

RESUMO

Abnormalities of brain connectivity and signal transduction are consistently observed in individuals with schizophrenias (SZ). Underlying these anomalies, convergent in vivo, post mortem, and genomic evidence suggest abnormal oligodendrocyte (OL) development and function and lower myelination in SZ. Our primary hypothesis was that there would be abnormalities in the number of induced pluripotent stem (iPS) cell-derived OLs from subjects with SZ. Our secondary hypothesis was that these in vitro abnormalities would correlate with measures of white matter (WM) integrity and myelination in the same subjects in vivo, estimated from magnetic resonance imaging. Six healthy control (HC) and six SZ iPS cell lines, derived from skin fibroblasts from well-characterized subjects, were differentiated into OLs. FACS analysis of the oligodendrocyte-specific surface, glycoprotein O4, was performed at three time points of development (days 65, 75, and 85) to quantify the number of late oligodendrocyte progenitor cells (OPCs) and OLs in each line. Significantly fewer O4-positive cells developed from SZ versus HC lines (95% CI 1.0: 8.6, F1,10 = 8.06, p = 0.02). The difference was greater when corrected for age (95% CI 5.4:10.4, F1,8 = 53.6, p < 0.001). A correlation between myelin content in WM in vivo, estimated by magnetization transfer ratio (MTR) and number of O4-positive cells in vitro was also observed across all time points (F1,9 = 4.3, p = 0.07), reaching significance for mature OLs at day 85 in culture (r = 0.70, p < 0.02). Low production of OPCs may be a contributing mechanism underlying WM reduction in SZ.


Assuntos
Encéfalo/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Adulto , Diferenciação Celular , Linhagem Celular , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Substância Branca , Adulto Jovem
6.
Sci Rep ; 7(1): 14038, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070876

RESUMO

Body-wide changes in bioenergetics, i.e., energy metabolism, occur in normal aging and disturbed bioenergetics may be an important contributing mechanism underlying late-onset Alzheimer's disease (LOAD). We investigated the bioenergetic profiles of fibroblasts from LOAD patients and healthy controls, as a function of age and disease. LOAD cells exhibited an impaired mitochondrial metabolic potential and an abnormal redox potential, associated with reduced nicotinamide adenine dinucleotide metabolism and altered citric acid cycle activity, but not with disease-specific changes in mitochondrial mass, production of reactive oxygen species, transmembrane instability, or DNA deletions. LOAD fibroblasts demonstrated a shift in energy production to glycolysis, despite an inability to increase glucose uptake in response to IGF-1. The increase of glycolysis and the abnormal mitochondrial metabolic potential in LOAD appeared to be inherent, as they were disease- and not age-specific. Our findings support the hypothesis that impairment in multiple interacting components of bioenergetic metabolism may be a key mechanism contributing to the risk and pathophysiology of LOAD.


Assuntos
Doença de Alzheimer/metabolismo , Metabolismo Energético , Fatores Etários , Fibroblastos , Glicólise , Humanos , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
9.
Mol Neurobiol ; 53(1): 95-108, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25407931

RESUMO

Dysfunction of growth factor (GF) activities contributes to the decline and death of neurons during aging and in neurodegenerative diseases. In addition, neurons become more resistant to GF signaling with age. Micro (mi)RNAs are posttranscriptional regulators of gene expression that may be crucial to age- and disease-related changes in GF functions. MiR-126 is involved in regulating insulin/IGF-1/phosphatidylinositol-3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) signaling, and we recently demonstrated a functional role of miR-126 in dopamine neuronal cell survival in models of Parkinson's disease (PD)-associated toxicity. Here, we show that elevated levels of miR-126 increase neuronal vulnerability to ubiquitous toxicity mediated by staurosporine (STS) or Alzheimer's disease (AD)-associated amyloid beta 1-42 peptides (Aß1-42). The neuroprotective factors IGF-1, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and soluble amyloid precursor protein α (sAPPα) could diminish but not abrogate the toxic effects of miR-126. In miR-126 overexpressing neurons derived from Tg6799 familial AD model mice, we observed an increase in Aß1-42 toxicity, but surprisingly, both Aß1-42 and miR-126 promoted neurite sprouting. Pathway analysis revealed that miR-126 overexpression downregulated elements in the GF/PI3K/AKT and ERK signaling cascades, including AKT, GSK-3ß, ERK, their phosphorylation, and the miR-126 targets IRS-1 and PIK3R2. Finally, inhibition of miR-126 was neuroprotective against both STS and Aß1-42 toxicity. Our data provide evidence for a novel mechanism of regulating GF/PI3K signaling in neurons by miR-126 and suggest that miR-126 may be an important mechanistic link between metabolic dysfunction and neurotoxicity in general, during aging, and in the pathogenesis of specific neurological disorders, including PD and AD.


Assuntos
Doença de Alzheimer/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley
10.
PLoS One ; 10(3): e0120693, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822989

RESUMO

Both the development and relief of stress-related psychiatric conditions such as major depression (MD) and post-traumatic stress disorder (PTSD) have been linked to neuroplastic changes in the brain. One such change involves the birth of new neurons (neurogenesis), which occurs throughout adulthood within discrete areas of the mammalian brain, including the dorsal hippocampus (HIP). Stress can trigger MD and PTSD in humans, and there is considerable evidence that it can decrease HIP neurogenesis in laboratory animals. In contrast, antidepressant treatments increase HIP neurogenesis, and their efficacy is eliminated by ablation of this process. These findings have led to the working hypothesis that HIP neurogenesis serves as a biomarker of neuroplasticity and stress resistance. Here we report that local alterations in the expression of Sprouty2 (SPRY2), an intracellular inhibitor of growth factor function, produces profound effects on both HIP neurogenesis and behaviors that reflect sensitivity to stressors. Viral vector-mediated disruption of endogenous Sprouty2 function (via a dominant negative construct) within the dorsal HIP of adult rats stimulates neurogenesis and produces signs of stress resilience including enhanced extinction of conditioned fear. Conversely, viral vector-mediated elevation of SPRY2 expression intensifies the behavioral consequences of stress. Studies of these manipulations in HIP primary cultures indicate that SPRY2 negatively regulates fibroblast growth factor-2 (FGF2), which has been previously shown to produce antidepressant- and anxiolytic-like effects via actions in the HIP. Our findings strengthen the relationship between HIP plasticity and stress responsiveness, and identify a specific intracellular pathway that could be targeted to study and treat stress-related disorders.


Assuntos
Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Estresse Psicológico/metabolismo , Animais , Depressão/metabolismo , Depressão/fisiopatologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipocampo/fisiopatologia , Masculino , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/fisiopatologia
11.
Am J Pathol ; 177(2): 575-85, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20566748

RESUMO

Postmortem, genetic, brain imaging, and peripheral cell studies all support decreased mitochondrial activity as a factor in the manifestation of Bipolar Disorder (BD). Because abnormal mitochondrial morphology is often linked to altered energy metabolism, we investigated whether changes in mitochondrial structure were present in brain and peripheral cells of patients with BD. Mitochondria from patients with BD exhibited size and distributional abnormalities compared with psychiatrically-healthy age-matched controls. Specifically, in brain, individual mitochondria profiles had significantly smaller areas, on average, in BD samples (P = 0.03). In peripheral cells, mitochondria in BD samples were concentrated proportionately more within the perinuclear region than in distal processes (P = 0.0008). These mitochondrial changes did not appear to be correlated with exposure to lithium. Also, these abnormalities in brain and peripheral cells were independent of substantial changes in the actin or tubulin cytoskeleton with which mitochondria interact. The observed changes in mitochondrial size and distribution may be linked to energy deficits and, therefore, may have consequences for cell plasticity, resilience, and survival in patients with BD, especially in brain, which has a high-energy requirement. The findings may have implications for diagnosis, if they are specific to BD, and for treatment, if they provide clues as to the underlying pathophysiology of BD.


Assuntos
Transtorno Bipolar/patologia , Mitocôndrias/patologia , Córtex Pré-Frontal , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antidepressivos/farmacologia , Linhagem Celular , Citocromos c/metabolismo , Citoesqueleto/ultraestrutura , Metabolismo Energético , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Humanos , Carbonato de Lítio/farmacologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Adulto Jovem
12.
J Neurosci ; 27(27): 7141-53, 2007 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-17611268

RESUMO

Alzheimer's disease (AD) involves activation of apoptotic pathways that may be regulated through signaling cascades initiated by the amyloid precursor protein (APP). Enlarged endosomes have been observed in postmortem AD brains at very early stages of the disease. We show here that exogenous expression of a familial AD (FAD) mutant of APP or of the APP binding protein APP-BP1 in neurons causes enlargement of early endosomes, increased receptor-mediated endocytosis via a pathway dependent on APP-BP1 binding to APP, and apoptosis. Levels of both APP-BP1 and Rab5 are elevated in early endosomes in cortical embryonic neurons expressing APP(V642I) or APP-BP1, in cultured skin fibroblast cells from Down syndrome subjects, and in postmortem hippocampal tissue of individuals with AD. Indeed, Rab5 was found to bind specifically to APP-BP1, between amino acids 443 and 479. Inhibition of Rab5 or dynamin activity, but not of Eps15 (epidermal growth factor receptor pathway substrate 15) activity, rescued neurons from apoptosis induced by either APP(V642I) or APP-BP1, without affecting levels of intracellular or secreted amyloid-beta (Abeta). Induction of Rab5 activity via expression of a constitutively active mutant led to an increase in neuronal apoptosis more than twice that attributable to induction of endosome enlargement via a Rab5-independent mechanism, regardless of Abeta production. Together, these findings suggest that Rab5 activation via an APP/APP-BP1-initiated signaling pathway mediates neuronal apoptosis caused by FAD mutants of APP and that, within this pathway, Rab5 has a specific role in signaling that is distinct from, although not independent of, its role in trafficking.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Apoptose/fisiologia , Transdução de Sinais/fisiologia , Proteínas rab5 de Ligação ao GTP/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Feminino , Humanos , Lactente , Masculino , Ratos , Proteínas rab5 de Ligação ao GTP/genética
13.
Mol Neurodegener ; 2: 3, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17286867

RESUMO

BACKGROUND: The beta-amyloid precursor protein (APP) is sequentially cleaved by the beta- and then gamma-secretase to generate the amyloid beta-peptides Abeta40 and Abeta42. Increased Abeta42/Abeta40 ratios trigger amyloid plaque formations in Alzheimer's disease (AD). APP binds to APP-BP1, but the biological consequence is not well understood. RESULTS: We report that when the endogenous APP-BP1 was suppressed by small interfering RNAs (siRNAs), cell-associated Abeta42 was dramatically increased in APP695 expressing primary neurons. The accumulation of Abeta42 was accompanied by significant increases in APP and APP-CTF in APP-BP1 siRNA expressing neurons. In contrast, APP-BP1 overexpression in primary neurons significantly decreased the levels of Abeta and endogenous APP but not APLPs. We also investigated the potential mechanism of APP-BP1-mediated APP processing. APP-BP1 co-precipitated with Presenilin-1 (PS1) in native rat brain extracts, co-migrated with the gamma-secretase components in brain membrane extracts in glycerol gradient centrifugation, and colocalized in primary neurons. Further, the endogenous PS1-CTF was significantly downregulated by APP-BP1 expression. CONCLUSION: Our data suggest that APP-BP1 may inhibit Abeta42 production by interacting with PS1 under physiological conditions.

14.
Biochim Biophys Acta ; 1772(4): 430-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17113271

RESUMO

The classic neuropathological diagnostic markers for AD are amyloid plaques and neurofibrillary tangles, but their role in the etiology and progression of the disease remains incompletely defined. Research over the last decade has revealed that cell cycle abnormalities also represent a major neuropathological feature of AD. These abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles; and it has been suggested that neuronal cell cycle regulatory failure may be a significant component of the pathogenesis of AD. The amyloid precursor protein (APP) is most commonly known as the source of the beta-amyloid (Abeta) peptides that accumulate in the brains of patients with AD. However, a large body of work supports the idea that APP is also a signaling receptor. Most recently, it has been shown that familial AD (FAD) mutations in APP or simple overexpression of wild type APP cause dysfunction of APP signaling, resulting in initiation of DNA synthesis in neurons and consequent apoptosis. In this article, we review the evidence that APP has the potential to activate aberrant neuronal cell cycle re-entry in AD, and we describe a signal transduction pathway that may mediate this abnormal activation of the cell cycle.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Replicação do DNA/fisiologia , DNA/biossíntese , Neurônios/enzimologia , Apoptose , Encéfalo/patologia , Encéfalo/fisiopatologia , Ciclo Celular , Emaranhados Neurofibrilares/patologia , Neurônios/citologia , Neurônios/fisiologia , Valores de Referência , Transdução de Sinais
15.
Pharmacol Ther ; 111(1): 99-113, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16274748

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide. It is a progressive, incurable disease whose predominant clinical manifestation is memory loss, and which always ends in death. The classic neuropathological diagnostic markers for AD are amyloid plaques and neurofibrillary tangles, but our understanding of the role that these features of AD play in the etiology and progression of the disease remains incomplete. Research over the last decade has revealed that cell cycle abnormalities also represent a major neuropathological feature of AD. These abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles. Growing evidence suggests that neuronal cell cycle regulatory failure, leading to apoptosis, may be a significant component of the pathogenesis of AD. A number of signaling pathways with the potential to activate aberrant cell cycle re-entry in AD have been described. The relationships among these signaling cascades, which involve the amyloid precursor protein (APP), cyclin-dependent kinases (cdks), and the cell cycle protein Pin1, have not yet been fully elucidated, but details of the individual pathways are beginning to emerge. This review summarizes the current state of knowledge with respect to specific neuronal signaling events that are thought to underlie cell cycle regulatory failure in AD brain. The elements of these pathways that represent potential new therapeutic targets for AD are described. Drugs and peptides that can inhibit molecular steps leading to AD neurodegeneration by intervening in the activation of cell cycle re-entry in neurons represent an entirely new approach to the development of treatments for AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Ciclo Celular/fisiologia , Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Quinases Ciclina-Dependentes/metabolismo , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Degeneração Neural/prevenção & controle , PPAR gama/agonistas , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais
17.
J Cell Biol ; 163(1): 27-33, 2003 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-14557245

RESUMO

APP-BP1, first identified as an amyloid precursor protein (APP) binding protein, is the regulatory subunit of the activating enzyme for the small ubiquitin-like protein NEDD8. We have shown that APP-BP1 drives the S- to M-phase transition in dividing cells, and causes apoptosis in neurons. We now demonstrate that APP-BP1 binds to the COOH-terminal 31 amino acids of APP (C31) and colocalizes with APP in a lipid-enriched fraction called lipid rafts. We show that coexpression of a peptide representing the domain of APP-BP1 that binds to APP, abolishes the ability of overexpressed APP or the V642I mutant of APP to cause neuronal apoptosis and DNA synthesis. A dominant negative mutant of the NEDD8 conjugating enzyme hUbc12, which participates in the ubiquitin-like pathway initiated by APP-BP1, blocks neuronal apoptosis caused by APP, APP(V642I), C31, or overexpression of APP-BP1. Neurons overexpressing APP or APP(V642I) show increased APP-BP1 protein levels in lipid rafts. A similar increase in APP-BP1 in lipid rafts is observed in the Alzheimer's disease brain hippocampus, but not in less-affected areas of Alzheimer's disease brain. This translocation of APP-BP1 to lipid rafts is accompanied by a change in the subcellular localization of the ubiquitin-like protein NEDD8, which is activated by APP-BP1.


Assuntos
Doença de Alzheimer/metabolismo , Apoptose/fisiologia , DNA/biossíntese , Ubiquitinas/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Imuno-Histoquímica , Proteína NEDD8 , Ratos
18.
J Neurosci ; 23(17): 6914-27, 2003 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-12890786

RESUMO

Apoptotic pathways and DNA synthesis are activated in neurons in the brains of individuals with Alzheimer disease (AD). However, the signaling mechanisms that mediate these events have not been defined. We show that expression of familial AD (FAD) mutants of the amyloid precursor protein (APP) in primary neurons in culture causes apoptosis and DNA synthesis. Both the apoptosis and the DNA synthesis are mediated by the p21 activated kinase PAK3, a serine-threonine kinase that interacts with APP. A dominant-negative kinase mutant of PAK3 inhibits the neuronal apoptosis and DNA synthesis; this effect is abolished by deletion of the PAK3 APP-binding domain or by coexpression of a peptide representing this binding domain. The involvement of PAK3 specifically in FAD APP-mediated apoptosis rather than in general apoptotic pathways is suggested by the facts that a dominant-positive mutant of PAK3 does not alone cause neuronal apoptosis and that the dominant-negative mutant of PAK3 does not inhibit chemically induced apoptosis. Pertussis toxin, which inactivates the heterotrimeric G-proteins Go and Gi, inhibits the apoptosis and DNA synthesis caused by FAD APP mutants; the apoptosis and DNA synthesis are rescued by coexpression of a pertussis toxin-insensitive Go. FAD APP-mediated DNA synthesis precedes FAD APP-mediated apoptosis in neurons, and inhibition of neuronal entry into the cell cycle inhibits the apoptosis. These data suggest that a normal signaling pathway mediated by the interaction of APP, PAK3, and Go is constitutively activated in neurons by FAD mutations in APP and that this activation causes cell cycle entry and consequent apoptosis.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Apoptose , DNA/biossíntese , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Apoptose/genética , Bromodesoxiuridina , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Genes Dominantes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Marcação In Situ das Extremidades Cortadas , Mutação , Sistema Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/biossíntese , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência/genética , Transdução de Sinais/fisiologia , Quinases Ativadas por p21 , Proteínas rab de Ligação ao GTP/biossíntese , Proteínas rab5 de Ligação ao GTP/biossíntese
19.
Neurobiol Aging ; 24(3): 437-51, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12600720

RESUMO

The application of beta-amyloid (Abeta) is cytotoxic to endothelial cells, promotes vasoconstriction and impairs nitric oxide (NO) generation or action. However, there is no information on the effect of intracellular Abeta on endothelial cell biology, although recent studies indicate that neuronal Abeta drives Alzheimer's disease pathogenesis. Since the serine-threonine kinase Akt is crucial to both neuronal and endothelial cell survival as well as eNOS activation, we investigated the effects of Abeta expression on Akt-signaling in cultured endothelial cells. Virally-encoded Abeta42 was proapoptotic and inhibitory to Akt phosphorylation in human umbilical vein endothelial cells (HUVECs). Toxicity was characterized by mitochondrial dysfunction, DNA condensation and activation of caspase-3. Substrates downstream of Akt action, GSK-3beta and eNOS, are underphosphorylated in the presence of Abeta. Constitutive activation of Akt reversed Abeta-induced toxicity and stimulated caspase-3 activity, suggesting that inhibition of Akt signaling is functionally significant. These Abeta effects were mediated, in part, through the derepression of GSK-3beta activation and correlated with reductions in NO production. We conclude that intracellular production of Abeta42 is cytotoxic to endothelial cells and that disruption of the Akt/GSK-3beta cell signaling pathway is involved.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apoptose/fisiologia , Endotélio Vascular/metabolismo , Quinases da Glicogênio Sintase/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Fragmentos de Peptídeos/toxicidade , Proteínas Tirosina Quinases/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais , Tirosina Quinase da Agamaglobulinemia , Caspase 3 , Caspases/efeitos dos fármacos , Caspases/metabolismo , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Líquido Intracelular , Fosforilação/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transfecção , Transgenes/genética , Veias Umbilicais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA